Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrey V. Sokolov, Anna V. Vologzhanina* and Petr P. Purygin

Department of Chemistry, Samara State University, Academician Pavlov Street 1, 443011 Samara, Russian Federation

Correspondence e-mail: vologzhanina@mail.ru

Key indicators

Single-crystal X-ray study
$T=243 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.058$
$w R$ factor $=0.173$
Data-to-parameter ratio $=20.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(5,6-Dimethyl-1,2,4-triazin-3-yl)-2-methyl-1H-benzimidazole

In the title molecule, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5}$, all bond lengths and angles show normal values. The molecular skeleton is almost planar; the mean planes of the benzimidazole and triazine rings make a dihedral angle of $1.28(6)^{\circ}$. The crystal packing is stabilized by $\pi-\pi$ interactions and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

In the search for correlation between the structure and reactivity of N-cyanoazole derivatives (Pan'kov et al., 2001a,b), 2-methyl- $1 H$-benzimidazole-1-carbohydrazonamide has been synthesized by the reaction of 2-methyl-1-cyanobenzimidazole with hydrazine (Pan'kov et al., 2001a). The title compound, (I) (Fig. 1), has been prepared by the reaction of 2-methyl- 1 H -benzimidazole-1-carbohydrazonamide with diacetyl.

(I)

The bond lengths and angles in (I) are normal (Allen et al., 1987). The triazine ring is almost planar, with an r.m.s. deviation of 0.014 (1) \AA. The geometry of the triazine ring and the $\mathrm{C}-\mathrm{N}$ distances indicate a donation of the N5 lone pair into the triazine π system. Furthermore, the benzimidazole and triazine rings in (I) are almost coplanar; the dihedral angle of $1.28(6)^{\circ}$ between the two least-squares planes suggests conjugation between the benzimidazole and triazine ring systems.

In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) link the molecules into zigzag chains. Two adjacent molecules are paired via a $\pi-\pi$ interaction, with a short distance of 3.533 (3) \AA between the centroid of the triazine ring of one molecule and the centroid of the five-membered ring of another molecule. Both these interactions stabilize the crystal packing (Fig. 2).

Experimental

2-Methyl-1 H-benzimidazole-1-carbohydrazonamide was prepared according to the procedure of Pan'kov et al. (2001a). 2-Methyl-1H-benzimidazole-1-carbohydrazonamide $(5.7 \mathrm{mmol})$ and diacetyl

Received 9 June 2006
Accepted 30 June 2006

organic papers

$(0.5 \mathrm{ml})$ were dissolved in propan-2-ol (10 ml). The mixture was boiled for $5-6 \mathrm{~h}$ and then concentrated to dryness. The solid was recrystallized from ethyl acetate (yield 95%; m.p. $420-421 \mathrm{~K}$).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5}$
$M_{r}=239.28$
Monoclinic, $P 2_{1} / n$
$a=7.412$ (4) \AA
$b=13.163$ (7) \AA
$c=12.499$ (7) \AA
$\beta=97.701$ (11) ${ }^{\circ}$
$V=1208.4$ (11) A^{3}

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.951, T_{\text {max }}=0.983$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.173$
$S=1.07$
3459 reflections
166 parameters

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.315 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=243(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.60 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

9157 measured reflections
3459 independent reflections
2213 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=30.0^{\circ}$

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.93	2.60	$3.423(2)$	148

Symmetry code: (i) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$.
All H atoms were located in a difference map and refined as riding, with $\mathrm{C}-\mathrm{H}=0.98\left(\mathrm{CH}_{3}\right)$ or $0.93 \AA(\mathrm{CH})$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Tha authors are grateful to the Laboratory of X-ray Diffraction Studies of the A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, for collecting the X-ray data.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART (Version 5.059) and SAINT-Plus (Version. 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The molecular structure of (I), with the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing in (I). Hydrogen bonds are shown as dashed lines.

Pan’kov, S. V., Belyakova, N. A., Vishnyakov, V. V. \& Purygin, P. P. (2001a). Russ. J. Gen. Chem. 71, 763-767.
Pan'kov, S. V., Belyakova, N. A., Vishnyakov, V. V. \& Purygin, P. P. (2001b). Russ. J. Org. Chem. 37, 426-429.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

